Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593141

RESUMO

Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.


Assuntos
Potenciais Somatossensoriais Evocados , Tálamo , Ratos , Animais , Tálamo/fisiologia , Potenciais Evocados , Núcleos Talâmicos , Córtex Cerebral , Córtex Somatossensorial/fisiologia
2.
PLoS Comput Biol ; 20(3): e1011941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484020

RESUMO

Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.


Assuntos
Eletrodos , Controle de Qualidade
3.
Sci Rep ; 12(1): 12675, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879365

RESUMO

The Active Allothetic Place Avoidance task is an alternative setup to Morris Water Maze that allows studying spatial memory in a dynamic world in the presence of conflicting information. In this task, a rat, freely moving on a rotating circular arena, has to avoid a sector defined within the room frame where shocks are presented. While for Morris Water Maze several studies have identified animal strategies which specifically affect performance, there were no such studies for the Active Allothetic Place Avoidance task. Using standard machine learning methods, we were able to reveal for the first time, to the best of our knowledge, explainable strategies that the animals employ in this task and demonstrate that they can provide a high-level interpretation for performance differences between an animal group treated with silver nanoparticles (AgNPs) and the control group.


Assuntos
Aprendizagem da Esquiva , Nanopartículas Metálicas , Animais , Aprendizagem em Labirinto , Ratos , Ratos Long-Evans , Prata , Memória Espacial
5.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506383

RESUMO

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Assuntos
Neurociências , Reprodutibilidade dos Testes
6.
Cereb Cortex ; 32(1): 15-28, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34274966

RESUMO

The marmoset monkey has become an important primate model in Neuroscience. Here, we characterize salient statistical properties of interareal connections of the marmoset cerebral cortex, using data from retrograde tracer injections. We found that the connectivity weights are highly heterogeneous, spanning 5 orders of magnitude, and are log-normally distributed. The cortico-cortical network is dense, heterogeneous and has high specificity. The reciprocal connections are the most prominent and the probability of connection between 2 areas decays with their functional dissimilarity. The laminar dependence of connections defines a hierarchical network correlated with microstructural properties of each area. The marmoset connectome reveals parallel streams associated with different sensory systems. Finally, the connectome is spatially embedded with a characteristic length that obeys a power law as a function of brain volume across rodent and primate species. These findings provide a connectomic basis for investigations of multiple interacting areas in a complex large-scale cortical system underlying cognitive processes.


Assuntos
Conectoma , Neocórtex , Animais , Callithrix , Córtex Cerebral , Especificidade da Espécie
7.
PLoS Comput Biol ; 17(5): e1008615, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33989280

RESUMO

Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Animais , Biologia Computacional , Simulação por Computador , Eletrodos , Potenciais Evocados/fisiologia , Espaço Extracelular/fisiologia , Humanos , Masculino , Ratos , Ratos Wistar , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Vibrissas/fisiologia
8.
Neuroimage ; 226: 117625, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301940

RESUMO

The rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki-Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data. The NM template combines some of the main advantages of histology-based atlases (e.g. information about the cytoarchitectural structure) with features more commonly associated with MRI-based templates (isotropic nature of the dataset, and probabilistic analyses). The underlying workflow may be found useful in the future development of 3D brain atlases that incorporate information about the variability of areas in species for which it may be impractical to ensure homogeneity of the sample in terms of age, sex and genetic background.


Assuntos
Atlas como Assunto , Callithrix/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Animais , Feminino , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino
9.
Sci Rep ; 10(1): 18981, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149202

RESUMO

Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130-180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked "fast" theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to "fast" theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.


Assuntos
Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Nariz/fisiologia , Respiração/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Haloperidol/efeitos adversos , Ketamina/farmacologia , Masculino , Nariz/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar , Ritmo Teta/efeitos dos fármacos , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/fisiologia
10.
Nat Commun ; 11(1): 1133, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111833

RESUMO

Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Mapeamento Encefálico , Callithrix/fisiologia , Imageamento Tridimensional , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/fisiologia , Vias Neurais , Marcadores do Trato Nervoso/administração & dosagem , Marcadores do Trato Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia
11.
Front Neuroinform ; 14: 589228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33568980

RESUMO

This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.

12.
Neuropsychopharmacology ; 44(2): 435-442, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30140046

RESUMO

High-frequency neuronal population oscillations (HFO, 130-180 Hz) are robustly potentiated by subanesthetic doses of ketamine. This frequency band has been recorded in functionally and neuroanatomically diverse cortical and subcortical regions, notably ventral striatal areas. However, the locus of generation remains largely unknown. There is compelling evidence that olfactory regions can drive oscillations in distant areas. Here we tested the hypothesis that the olfactory bulb (OB) is a locus for the generation of HFO following a subanesthetic dose of ketamine. The effect of ketamine on the electrophysiological activity of the OB and ventral striatum of male Wistar rats was examined using field potential and unit recordings, local inhibition, naris blockade, current source density and causality estimates. Ketamine-HFO was of larger magnitude and was phase-advanced in the OB relative to ventral striatum. Granger causality analysis was consistent with the OB as the source of HFO. Unilateral local inhibition of the OB and naris blockade both attenuated HFO recorded locally and in the ventral striatum. Within the OB, current source density analysis revealed HFO current dipoles close to the mitral layer and unit firing of mitral/tufted cells was phase locked to HFO. Our results reveal the OB as a source of ketamine-HFO which can contribute to HFO in the ventral striatum, known to project diffusely to many other brain regions. These findings provide a new conceptual understanding on how changes in olfactory system function may have implications for neurological disorders involving NMDA receptor dysfunction such as schizophrenia and depression.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Ratos , Ratos Wistar
13.
Brain Struct Funct ; 224(1): 111-131, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30288557

RESUMO

Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.


Assuntos
Córtex Auditivo/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Animais , Córtex Auditivo/citologia , Percepção Auditiva , Comportamento Animal , Evolução Biológica , Callithrix , Potenciais Evocados Auditivos , Potenciais Evocados Visuais , Feminino , Masculino , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Transmissão Sináptica , Córtex Visual/citologia , Percepção Visual
14.
Brain Struct Funct ; 223(4): 1779-1795, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29214509

RESUMO

The gray short-tailed opossum (Monodelphis domestica) is a small marsupial gaining recognition as a laboratory animal in biomedical research. Despite numerous studies on opossum neuroanatomy, a consistent and comprehensive neuroanatomical reference for this species is still missing. Here we present the first three-dimensional, multimodal atlas of the Monodelphis opossum brain. It is based on four complementary imaging modalities: high resolution ex vivo magnetic resonance images, micro-computed tomography scans of the cranium, images of the face of the cutting block, and series of sections stained with the Nissl method and for myelinated fibers. Individual imaging modalities were reconstructed into a three-dimensional form and then registered to the MR image by means of affine and deformable registration routines. Based on a superimposition of the 3D images, 113 anatomical structures were demarcated and the volumes of individual regions were measured. The stereotaxic coordinate system was defined using a set of cranial landmarks: interaural line, bregma, and lambda, which allows for easy expression of any location within the brain with respect to the skull. The atlas is released under the Creative Commons license and available through various digital atlasing web services.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Monodelphis/anatomia & histologia , Fatores Etários , Animais , Crioultramicrotomia , Neuroanatomia , Valores de Referência , Técnicas Estereotáxicas
15.
Elife ; 62017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29148974

RESUMO

Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.


Assuntos
Hipocampo/fisiologia , Potenciais da Membrana , Neurônios/fisiologia , Animais , Simulação por Computador , Técnicas de Patch-Clamp , Ratos Wistar
16.
Front Hum Neurosci ; 11: 490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093671

RESUMO

The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

17.
Neuroinformatics ; 15(1): 87-99, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837401

RESUMO

A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. In some sciences, this could be a mathematical proof, yet biological systems usually do not satisfy assumptions of mathematical theorems. One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. Moreover, these data can be used to study the effects of different tissue models on the measurement. The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al., Journal of Neurophysiology, 93(4), 2194-2232 (Traub et al. 2005)), with activity evoked by different thalamic stimuli.


Assuntos
Córtex Cerebral/fisiologia , Simulação por Computador , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Conjuntos de Dados como Assunto , Humanos , Disseminação de Informação , Potenciais da Membrana , Vias Neurais/fisiologia , Software
18.
J Comp Neurol ; 524(11): 2161-81, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099164

RESUMO

The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Imageamento Tridimensional/métodos , Animais , Coloração e Rotulagem
19.
Front Neuroinform ; 10: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834620

RESUMO

Laminar population analysis (LPA) is a method for analysis of electrical data recorded by linear multielectrodes passing through all lamina of cortex. Like principal components analysis (PCA) and independent components analysis (ICA), LPA offers a way to decompose the data into contributions from separate cortical populations. However, instead of using purely mathematical assumptions in the decomposition, LPA is based on physiological constraints, i.e., that the observed LFP (low-frequency part of signal) is driven by action-potential firing as observed in the MUA (multi-unit activity; high-frequency part of the signal). In the presently developed generalized laminar population analysis (gLPA) the set of basis functions accounting for the LFP data is extended compared to the original LPA, thus allowing for a better fit of the model to experimental data. This enhances the risk for overfitting, however, and we therefore tested various versions of gLPA on virtual LFP data in which we knew the ground truth. These synthetic data were generated by biophysical forward-modeling of electrical signals from network activity in the comprehensive, and well-known, thalamocortical network model developed by Traub and coworkers. The results for the Traub model imply that while the laminar components extracted by the original LPA method overall are in fair agreement with the ground-truth laminar components, the results may be improved by use of gLPA method with two (gLPA-2) or even three (gLPA-3) postsynaptic LFP kernels per laminar population.

20.
Neuroinformatics ; 14(3): 265-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26687079

RESUMO

Techniques based on imaging serial sections of brain tissue provide insight into brain structure and function. However, to compare or combine them with results from three dimensional imaging methods, reconstruction into a volumetric form is required. Currently, there are no tools for performing such a task in a streamlined way. Here we propose the Possum volumetric reconstruction framework which provides a selection of 2D to 3D image reconstruction routines allowing one to build workflows tailored to one's specific requirements. The main components include routines for reconstruction with or without using external reference and solutions for typical issues encountered during the reconstruction process, such as propagation of the registration errors due to distorted sections. We validate the implementation using synthetic datasets and actual experimental imaging data derived from publicly available resources. We also evaluate efficiency of a subset of the algorithms implemented. The Possum framework is distributed under MIT license and it provides researchers with a possibility of building reconstruction workflows from existing components, without the need for low-level implementation. As a consequence, it also facilitates sharing and data exchange between researchers and laboratories.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imageamento Tridimensional/métodos , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ratos Wistar , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...